

Chronic wounds

Amanda Bergren, DVM, DACVS-LA

Causes of delayed wound healing

Assessment of the chronic wound

Treatment of the chronic wound

Scarring

I'll keep it brief, I promise

• Inflammatory

- First several days
- Hemostasis
 - $_{\odot}$ Vasoconstriction
 - $_{\circ}$ Platelet aggregation
 - $_{\circ}\,$ Fibrin deposition
- Acute inflammation
 - $_{\circ}\,$ Leukocyte influx
 - Neutrophils
 - Macrophages

• Proliferative

- Starts by day 3 after injury
- Angiogenesis
- Formation of fibrous and granulation tissue
- Collagen deposition
- Epithelialization
- Wound contraction

• Remodeling

- Begins in 2nd week, ends 1-2 years later
- Remodeling, reorientation, collagen cross-linking
- New tissue 15-20% weaker than original tissue
 - $_{\odot}~$ 20% strength at 3 weeks
 - $_{\odot}~50\%$ strength at 3 months
 - $_{\odot}~$ 70-80% strength at 1 year

Causes of delayed wound healing

Why won't the wound heal?

- –Infection
- -Necrotic tissue
- Foreign material
- Exuberant granulation tissue
- -Excessive motion
- Repetitive mechanical trauma
- Neoplasia
- -Arrested healing response

Infection

- Presence of replicating microorganisms in wound
- Delays healing
- Reduces gains in tensile strength
- Increases risk of dehiscence

Infection

- Presence of replicating microorganisms in wound
- Delays healing
- Reduces gains in tensile strength
- Increases risk of dehiscence

Necrotic tissue

• Sequestrum formation common in wounds with exposed bone

Foreign material

• Substrate for bacterial growth

Exuberant granulation tissue

- Both cause and effect of delayed healing
- Prolonged inflammatory phase → excessive proliferative phase
 - Wound expansion
 - Delayed contraction
 - -Inhibits epithelialization

Excessive motion

• Delays contraction and epithelialization

Neoplasia

- Neoplastic transformation uncommon
 - -Squamous cell carcinoma
 - -Sarcoids

Neoplasia

- Neoplastic transformation uncommon
 - -Squamous cell carcinoma
 - -Sarcoids

Neoplasia

- Neoplastic transformation uncommon
 - -Squamous cell carcinoma
 - -Sarcoids

• Digital exploration

- Diagnostic imaging
 - Radiographs
 - \circ Sequestrum
 - $_{\odot}$ Metallic or mineral foreign bodies

Diagnostic imaging

- Contrast sinography
 - Contrast injected into sinus tract
 - Delineate wound tract
 - Identify foreign bodies in tract
 - Contrast surrounds FB creating filling defect
 - Useful for radiolucent material (e.g. wood)

Equine Wound Management

Equine Wound Management

Assessment of the chronic wound

Diagnostic imaging

- Contrast sinography
 - $_{\odot}$ Contrast injected into sinus tract
 - $_{\odot}$ Delineate wound tract
 - $_{\odot}$ Identify foreign bodies in tract
 - Contrast surrounds FB creating filling defect
 - Useful for radiolucent material (e.g. wood)

- Diagnostic imaging
 - Ultrasound
 - $_{\circ}$ Radiolucent foreign material
 - $_{\circ}$ Fluid pockets

25

Assessment of the chronic wound

- Ultrasound
 - Radiolucent foreign material
 - $_{\circ}$ Fluid pockets

Culture

- -Tissue samples or exudate
- -Can be misleading with draining tracts
 - $_{\odot}$ Secondary colonization
 - $_{\circ}$ Bacteria on FB likely different

• Biopsy

- -Requires deep samples
 - Superficial tissue often not useful
- Excisional
 - $_{\odot}$ More tissue for pathologist
 - $_{\rm O}$ Submit everything
- Can still be difficult to differentiate
 - $_{\odot}$ Neoplastic cells may not be everywhere

Knottenbelt, NAVC 2007

Treatment of the chronic wound

Treatment of the chronic wound

• Possible treatment options:

- Wound revision
- -Immobilization
- -Skin grafting

Wound revision

• Returns the wound to the acute phase

Wound revision

- Returns the wound to the acute phase
- Debridement
 - Reduce bacterial numbers
 - -Remove foreign material
 - -Remove necrotic tissue

Wound revision

- Returns the wound to the acute phase
- Debridement
- Secondary closure
 - Wound closure > 5 days after injury
 - Requires excision of granulation tissue and epithelial edges

Immobilization

- Splinting
- Casting
- Indications
 - -Wounds in pastern/heel bulb region
 - Wounds in high motion areas
 - $_{\circ}$ Dorsal fetlock
 - Dorsal carpus/tarsus
 - $_{\odot}$ Wound overlying extensor tendons

Immobilization: splints

Material for splints

-PVC pipe

 $_{\odot}$ Inexpensive, lightweight, can cut to size for each case

-Fiberglass cast

- $_{\odot}$ Specifically made to fit each horse
- $_{\odot}$ Expensive, less rigid than PVC

Immobilization: splints

• Principles of application

– Placement

- Distal limb: proximal metacarpus/tarsus to ground
- Carpus: proximal radius to fetlock joint, place caudally

 $_{\rm O}$ Tarsus:

- One splint from point of hock to ground, place caudally
- One splint from stifle to ground, place laterally
- -Secure with non-elastic tape
 - $_{\circ}$ Sports tape, silver tape
 - \circ Not tensoplast!

• Benefits of casting

- Limits motion much better than bandages
- Less expense than frequent bandage changes

Benefits of casting

- Limits motion much better than bandages
- Less expense than frequent bandage changes

Downsides of casting

- Requires vigilant client
- Cast sores
 - $_{\circ}$ 45% of horses
 - 48% of traditional casts, 26% of bandage casts
 - $_{\rm \odot}$ Increased if limb casted in flexed position
- Long-term use can cause changes in bone, cartilage and periarticular tissues
 - $_{\odot}$ Decreased bone density, decreased range of motion, persistent lameness

Levet, EVJ 2009

• Types of casts

- -Traditional
 - $_{\rm O}$ Foot cast
 - $_{\odot}$ Distal limb cast
- Bandage cast
 - $_{\circ}$ Standard
 - $_{\circ}$ Bivalved

• Foot casts

- Encompass hoof and pastern
- Best used for heel bulb and coronary band injuries

• Foot casts

- Encompass hoof and pastern
- Best used for heel bulb and coronary band injuries

Any suggestions on getting this to finally heal? 5 year old TB gelding that sustained this heel bulb laceration on 11/26/23. It was sutured initially. Owner had been doing pressure bandages every 3-5 days until the beginning of January then started just doing simple bandages with a nonstick pad, roll gauze, and elastikon. It'll look good then detach again. Have used mostly SSD cream on it with some entederm as needed. Thoughts?

• Distal limb casts

- -Extend from foot to just below carpus/tarsus
- -Best used for pastern and fetlock injuries

• Bandage cast

- Intermediate stability between traditional cast and bandage
- Increased padding
 - $_{\circ}\,$ More room for error
 - $_{\rm \circ}\,$ Less likely to develop cast sores
 - Standing application allows normal weight bearing position

Bivalved bandage cast

- Allows for continued access to wound
 - Repeat joint lavage
 - $_{\circ}$ Continued debridement
 - $_{\rm \circ}\,$ Large amounts of exudate

Why graft?

- Inexpensive
 - Cost of procedure offset by savings on wound care and bandage material
- Better cosmesis and better quality tissue
 - Contains epidermis, dermis, adnexal structures
 - More resilient tissue than wound healed by epithelialization
- Requires only basic techniques and equipment
- Should not regard as a last resort treatment option!

Types of grafts

- Pedicle grafts
 - Remain connected to donor site
 - -Useful for poorly vascularized sites
 - -Rarely used due to limited mobility of equine skin

Types of grafts

- Free grafts
 - -Completely separated from donor site and transferred to new site
 - -Must establish new vascular connections
 - -Island grafts most commonly used in horses

Types of grafts

- Free grafts
 - -Full thickness
 - $_{\circ}$ Epidermis + entire dermis
 - -Split thickness
 - $_{\circ}$ Epidermis + portion of dermis

– Percentage of dermis influences durability, acceptance and cosmesis

- More dermis = more durable, better cosmesis
- $_{\circ}$ Less dermis = better acceptance

47

Skin grafting

Types of grafts

- Punch grafts
 - -Harvest using biopsy punch
 - -Full thickness
 - Donor sites: under mane, lumbar region

Types of grafts

- Pinch grafts
 - -Harvest by elevating & excising small cone of skin
 - Partial thickness
 - Donor site: pectoral skin

Case selection

- Large wounds where contraction has ceased
- Open wound which cannot be sutured
- Healthy granulation bed
 - -Good vascular supply
 - No devitalized tissue
 - -Free of infection

Technique

- Wound bed prepared 24-48 hours ahead excise excess granulation tissue
- Create recipient holes prior to harvesting grafts
 - -Allows for hemostasis
 - Place holes ca. 6mm apart
 - -Slightly smaller hole than graft
 - -Fill hole with Q-tip

Technique

- Harvest grafts
- Insert grafts into recipient holes
- Bandage
 - -Initial change after 4 days

- Success rate: 50-60%
- Causes for graft failure:
 - -Infection
 - -Fluid accumulation
 - -Motion
 - -Inflammation

Skin grafting: case example

Skin grafting: case example

Scarring

Scar tissue

- Reduced bursting strength
- Reduced extensibility
- Reduced toughness

When do we need to treat scars?

- Restricted movement
- Pain
- Hypertrophic scarring?

What we know from human medicine

- Physical scar management beneficial
 - -Massage
 - -Silicone gel
 - –Laser
 - -ESWT
 - -Scar taping
- Improved pain, pruritis, pliability, thickness

Massage

- Pros: inexpensive, owner can perform
- -Cons: friction can be irritating to tissues
- Varied protocols 10 minutes twice daily to 30 minutes once weekly
- Weak evidence

Equine wound healing: influence of low level laser therapy on an equine metacarpal wound healing model

Wundheilung beim Pferd: Untersuchungen zur Wirksamkeit der Low-Level-Laser-Therapie am Wundheilungsmodell (Mittelfußregion)

• Laser

Massage

- -Best used in newly revised wounds?
 - As early in process of wound healing as possible
- Daily? Every other day?
- Poor evidence for use in equine medicine

Jann, Photon Laser Med 2012

- Massage
- Laser
- ESWT
 - -Improved elasticity in hypertrophic scars
 - Equine studies focus on acute phase
 - $_{\odot}$ Decreased granulation tissue
 - $_{\odot}$ Increased rate of healing?
 - -Once weekly

BJERKE Alltid det beste for hesten

- Massage
- Laser
- ESWT
- Silicone gel sheets
 - -Increased tissue hydration and pliability
 - -Readily available, reasonable cost
 - -Daily use to cover healing wound or scar

63

Identify cause of delayed healing

Infection? Necrosis?

Foreign material?

Excess motion?

Other?

Formulate treatment plan

Wound revision? Immobilization? Skin grafting?

Summary

Bjerke Dyrehospital

www.bjerkedyrehospital.no E-post: info-rkb@rikstoto.no

Sentralbord: 22 95 60 10 24/7 akuttvakt